Distance Learning Programme : An initiative by AEES, MUMBAI

CLASS XI-MATHEMATICS

CHAPTER 7

PERMUTATIONS AND COMBINATIONS

HANDOUT OF MODULE-2/3

1.A Permutation is an arrangement in a definite order of a number of

objects taken some or all at a time.

2. <u>Permutation of n different objects</u> The number of permutations of *n*

different objects taken r at a time when $0 < r \le n$ and the objects do not repeat

can be obtained by fundamental principle of counting as

n(n-1)(n-2).....(n-r+1), which is denoted by for $n_{p_r} = \frac{n!}{(n-r)!}$.

3. Properties of n_{P_r} :

(i)
$${}^{n}P_{n} = n (n-1) (n-2)...1 = n!$$

(ii) ${}^{n}P_{0} = \frac{n!}{n!} = 1$
(iii) ${}^{n}P_{1} = n$
(iv) ${}^{n}P_{n-1} = n!$
(v) ${}^{n}P_{r} = n \cdot {}^{n-1}P_{r-1} = n(n-1) \cdot {}^{n-2}P_{r-2}$
 $= n(n-1)(n-2) \cdot {}^{n-3}P_{r-3}$
(vi) ${}^{n-1}P_{r} + r \cdot {}^{n-1}P_{r-1} = {}^{n}P_{r}$
(vii) $\frac{{}^{n}P_{r}}{{}^{n}P_{r-1}} = n - r + 1$

4.Factorial notation :

The notation n! represents the product of first n natural numbers ,i.e., the

```
product 1x2x3x...x(n-1)xn = n!
```

and 0! defined as 1.

Examples:

5! = 5x4x3x2x1=120

7!= 7x6x5x4x3x2x1= 5040

5. The number of permutations of n different objects taken r at a time , where repetitions is allowed , is n^r .

6.The number of permutations of n objects ,where p objects are of the same kind and rest are all different = $\frac{n!}{p!}$

7. The number of permutations of n objects ,where P_1 objects are of one kind , P_2 objects are of the second kind,..., P_k are of k th kind and the rest ,if any ,are of different kind is $\frac{n!}{p_1!p_2!p_{3!\dots}p_k!}$

Example 1:

How many words(with or with out meaning) can be made from the letters of the word MONDAY ,assuming that no letter is repeated, if, (i) 4 letters are used at a time.

(ii) All letters are used at a time

(iii) All letters are used but the first is vowel

Ans: (i) If 4 letters are used at a time,

then the number of words formed by letters of the

word, MONDAY =
$$6_{P_4} = \frac{6!}{2!} = 6X5X4X3 = 360.$$

(ii) All letters are used at a time = 6! = 6x5x4x3x2x1 = 720

(iii) All letters used but first is vowel = 2x5! = 2x5x4x3x2x1=240

Example 2:

Find the number of arrangements of the letter of the word INDEPENDENCE.

Ans: Total number of letters in the word 'INDEPENDENCE'

is 12, out of which N appears 3 times, E appears 4 times and D appears 2 times and rest are all different.

Hence,

the required number of arrangements $=\frac{12!}{3!4!2!}=1663200$